Name_	
Picturing Motion / Where & When?	(p. 31 – 37)
Kinds Of Motion	
1. What causes an object to be in motion?	
A change in position.	
2. What two factors are used to describe motion? 1. Place (Where) 2. Time (W)	Lowhere?
tion Diagrams	A CO
1. One way that motion can be determined is by relating t	the position of the object to the
backgrownd over equal time interv	vals. 6.32) Bottom
2. Define the term motion diagram. Motion Diagram - series of images shows of a moving object at time intervals	y the positions interprets equal equal every Jsec
1. Define the term particle model.	
2. Which statement is false concerning a particle model?	often diagram in which the placed by a series of
 a. To use a particle model, the object size must be mu b. The internal motions of the object are ignored. c. A dot represents the central point of the object in a d. A particle model produces a more complex version 	particle model.

IV. Coordinate Systems

III. The Particle Model

I. All Kinds Of Motion

II. Motion Diagrams

1. Match the following terms with the correct definitions.

1. Coordinate System	A.	Point at which both variables have the value zero.
2. A · Origin	B.	Separation between an object and the origin.

D. Describes how far an object is from the origin.

2. What are two quantities that an arrow can indicate on a motion diagram?

	Name					
	3. A negative position on a motion diagram would be indicated by motion to the right.					
)	Circle One: True False					
	4. Match the following terms with the correct definition.					
	1 Magnitude A. Quantities that possess both magnitude and direction.					
	2. A - Vectors B. Quantities that are just numbers without any direction.					
	3. <u>B.</u> - Scalars C. Vector that results from the sum of two other vectors.					
	D. A measure of size.					
	5. List two examples of a vector and a scalar.					
	Vector 1. Position (Displacement) 2. Velocity Scalar 1. Temperature 2. Distance					
	Scalar 1. Temperature 2. Distance					
	6. The resultant always points from the tail of the first vector to the tip of the last vector.					
	Circle One: True False (See below!)					
	V. Time Intervals & Displacement					
)	1. Define the term time interval. Time Interval - difference between two times (Start +)					
	2. Write out the formula to determine Δt .					
	$\Delta t = \frac{1}{1 + 1}$					
	3. Define the term displacement. (Distance Vs. DE placement DEMO)					
	Displacement - vector representing a change in position					
	4. Write out the formula to determine Δd . Start + stop in a relay race.					
	$\Delta d = (d_f - d_i)$					
	5. How do you subtract vectors?					
	Keverse the subtracted vector and add. Bottom					
	 A displacement vector is always drawn with the tail at the earlier position and point at the later position. 					
	Circle One: True False					