Equilibrium Constant Practice Problems

1. Write equilibrium expressions for the following reactions.

a. $NH_4HS(g) \Leftrightarrow NH_3(g) + H_2S(g)$

b. $4HCl(g) + O_2(g) \Leftrightarrow 2Cl_2(g) + 2H_2O(g)$

c. $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$

d. $CuSO_4 \cdot 3H_2O(s) + 2H_2O(g) \Leftrightarrow CuSO_4 \cdot 5H_2O(s)$

2. At 793 K, the equilibrium constant for the reaction $NCl_3(g) + Cl_2(g) \Leftrightarrow NCl_5(g)$ is 39.3.

a. Do products or reactants dominate in this equilibrium?

b. If the equilibrium constant for this reaction were less than 1, would the reactants or products be dominant?

- 3. At 773 K, the reaction 2NO(g) + O₂(g) ↔ 2NO₂(g) produces the following concentrations: [NO] = 3.49×10⁻⁴M; [O₂] = 0.80M; [NO₂] = 0.25M.
 - a. What is the equilibrium constant expression for the reaction?

b. What is the equilibrium constant for the reaction?

- 4. If you wished to maximize the products of the following reactions, which concentrations would you lower or raise?
 - a. $H_2(g) + Br_2(g) \Leftrightarrow 2HBr(g)$

b. $CO_2(g) + H_2(g) \Leftrightarrow CO(g) + H_2O(g)$

c. $SO_2(g) + NO_2(g) \Leftrightarrow SO_3(g) + NO(g)$

d. $C(s) + CO_2(g) \Leftrightarrow 2CO(g)$

- 5. For each reaction, state whether increasing or decreasing the volume of the reaction vessel would yield more product at equilibrium. Give the reason for your choice.
 - a. $N_2O_4(g) \Leftrightarrow 2NO_2(g)$
 - b. $2SO_3(g) \Leftrightarrow 2SO_2(g) + O_2(g)$
 - c. $CH_4(g) + 2O_2(g) \Leftrightarrow CO_2(g) + 2H_2O(g)$
 - d. $2CO(g) + O_2(g) \iff 2CO_2(g)$
- 6. What effect would an increase in temperature have on these reactions at equilibrium? Why?
 - a. Heat + $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$
 - b. $CH_4(g) + 2O_2(g) \Leftrightarrow CO(g) + 2H_2O + heat$
 - c. $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g) + heat$
 - d. Heat + $CH_4(g) \Leftrightarrow C(s) + 2H_2(g)$

- 7. Phosphorous pentachloride decomposes to phosphorous trichloride according to this equation: PCl₅(g) ↔ PCl₃(g) + Cl₂(g). At equilibrium, [PCl₅] = 1.00*M* and [Cl₂] = 3.16×10⁻²*M*.
 - a. Write the expression for determining the concentration of PCl₃.

b. What is the equilibrium concentration of PCl₃? Use: $K_{eq} = 1.00 \times 10^{-3}$.

8. The solubility product constant (K_{sp}) of Ag₂SO₄ is 1.2×10⁻⁵.

a. How would you estimate the molar solubility of SO₄^{2–} without actually calculating it?

b. What is the calculated molar solubility of SO₄²⁻?